< Summary

Information
Class: LeetCode.Algorithms.WaysToExpressAnIntegerAsSumOfPowers.WaysToExpressAnIntegerAsSumOfPowersDynamicProgramming
Assembly: LeetCode
File(s): D:\a\LeetCode-CS\LeetCode-CS\source\LeetCode\Algorithms\WaysToExpressAnIntegerAsSumOfPowers\WaysToExpressAnIntegerAsSumOfPowersDynamicProgramming.cs
Line coverage
100%
Covered lines: 24
Uncovered lines: 0
Coverable lines: 24
Total lines: 61
Line coverage: 100%
Branch coverage
100%
Covered branches: 8
Total branches: 8
Branch coverage: 100%
Method coverage

Feature is only available for sponsors

Upgrade to PRO version

Metrics

MethodBranch coverage Crap Score Cyclomatic complexity Line coverage
NumberOfWays(...)100%66100%
Pow(...)100%22100%

File(s)

D:\a\LeetCode-CS\LeetCode-CS\source\LeetCode\Algorithms\WaysToExpressAnIntegerAsSumOfPowers\WaysToExpressAnIntegerAsSumOfPowersDynamicProgramming.cs

#LineLine coverage
 1// --------------------------------------------------------------------------------
 2// Copyright (C) 2025 Eugene Eremeev (also known as Yevhenii Yeriemeieiv).
 3// All Rights Reserved.
 4// --------------------------------------------------------------------------------
 5// This software is the confidential and proprietary information of Eugene Eremeev
 6// (also known as Yevhenii Yeriemeieiv) ("Confidential Information"). You shall not
 7// disclose such Confidential Information and shall use it only in accordance with
 8// the terms of the license agreement you entered into with Eugene Eremeev (also
 9// known as Yevhenii Yeriemeieiv).
 10// --------------------------------------------------------------------------------
 11
 12namespace LeetCode.Algorithms.WaysToExpressAnIntegerAsSumOfPowers;
 13
 14/// <inheritdoc />
 15public class WaysToExpressAnIntegerAsSumOfPowersDynamicProgramming : IWaysToExpressAnIntegerAsSumOfPowers
 16{
 17    private const int Mod = 1_000_000_007;
 18
 19    /// <summary>
 20    ///     Time complexity - O(n^(1 + 1/x))
 21    ///     Space complexity - O(n)
 22    /// </summary>
 23    /// <param name="n"></param>
 24    /// <param name="x"></param>
 25    /// <returns></returns>
 26    public int NumberOfWays(int n, int x)
 227    {
 228        var dp = new long[n + 1];
 29
 230        dp[0] = 1;
 31
 1832        for (var i = 1; i <= n; i++)
 833        {
 834            var power = Pow(i, x);
 35
 836            if (power > n)
 137            {
 138                break;
 39            }
 40
 7241            for (var j = n; j >= power; j--)
 2942            {
 2943                dp[j] = (dp[j] + dp[j - power]) % Mod;
 2944            }
 745        }
 46
 247        return (int)dp[n];
 248    }
 49
 50    private static int Pow(int value, int exponent)
 851    {
 852        var result = 1;
 53
 4054        for (var i = 0; i < exponent; i++)
 1255        {
 1256            result *= value;
 1257        }
 58
 859        return result;
 860    }
 61}