| | 1 | | // -------------------------------------------------------------------------------- |
| | 2 | | // Copyright (C) 2025 Eugene Eremeev (also known as Yevhenii Yeriemeieiv). |
| | 3 | | // All Rights Reserved. |
| | 4 | | // -------------------------------------------------------------------------------- |
| | 5 | | // This software is the confidential and proprietary information of Eugene Eremeev |
| | 6 | | // (also known as Yevhenii Yeriemeieiv) ("Confidential Information"). You shall not |
| | 7 | | // disclose such Confidential Information and shall use it only in accordance with |
| | 8 | | // the terms of the license agreement you entered into with Eugene Eremeev (also |
| | 9 | | // known as Yevhenii Yeriemeieiv). |
| | 10 | | // -------------------------------------------------------------------------------- |
| | 11 | |
|
| | 12 | | namespace LeetCode.Algorithms.StrangePrinter; |
| | 13 | |
|
| | 14 | | /// <inheritdoc /> |
| | 15 | | public class StrangePrinterDynamicProgramming : IStrangePrinter |
| | 16 | | { |
| | 17 | | /// <summary> |
| | 18 | | /// Time complexity - O(n^3) |
| | 19 | | /// Space complexity - O(n^2) |
| | 20 | | /// </summary> |
| | 21 | | /// <param name="s"></param> |
| | 22 | | /// <returns></returns> |
| | 23 | | public int StrangePrinter(string s) |
| 2 | 24 | | { |
| 2 | 25 | | if (s.Length == 0) |
| 0 | 26 | | { |
| 0 | 27 | | return 0; |
| | 28 | | } |
| | 29 | |
|
| 2 | 30 | | var dp = new int[s.Length, s.Length]; |
| | 31 | |
|
| 22 | 32 | | for (var i = 0; i < s.Length; i++) |
| 9 | 33 | | { |
| 9 | 34 | | dp[i, i] = 1; |
| 9 | 35 | | } |
| | 36 | |
|
| 18 | 37 | | for (var length = 2; length <= s.Length; length++) |
| 7 | 38 | | { |
| 50 | 39 | | for (var i = 0; i <= s.Length - length; i++) |
| 18 | 40 | | { |
| 18 | 41 | | var j = i + length - 1; |
| | 42 | |
|
| 18 | 43 | | dp[i, j] = dp[i, j - 1] + 1; |
| | 44 | |
|
| 114 | 45 | | for (var k = i; k < j; k++) |
| 39 | 46 | | { |
| 39 | 47 | | if (s[k] == s[j]) |
| 18 | 48 | | { |
| 18 | 49 | | dp[i, j] = Math.Min(dp[i, j], dp[i, k] + dp[k + 1, j - 1]); |
| 18 | 50 | | } |
| 39 | 51 | | } |
| 18 | 52 | | } |
| 7 | 53 | | } |
| | 54 | |
|
| 2 | 55 | | return dp[0, s.Length - 1]; |
| 2 | 56 | | } |
| | 57 | | } |