| | 1 | | // -------------------------------------------------------------------------------- |
| | 2 | | // Copyright (C) 2025 Eugene Eremeev (also known as Yevhenii Yeriemeieiv). |
| | 3 | | // All Rights Reserved. |
| | 4 | | // -------------------------------------------------------------------------------- |
| | 5 | | // This software is the confidential and proprietary information of Eugene Eremeev |
| | 6 | | // (also known as Yevhenii Yeriemeieiv) ("Confidential Information"). You shall not |
| | 7 | | // disclose such Confidential Information and shall use it only in accordance with |
| | 8 | | // the terms of the license agreement you entered into with Eugene Eremeev (also |
| | 9 | | // known as Yevhenii Yeriemeieiv). |
| | 10 | | // -------------------------------------------------------------------------------- |
| | 11 | |
|
| | 12 | | namespace LeetCode.Algorithms.PrimeSubtractionOperation; |
| | 13 | |
|
| | 14 | | /// <inheritdoc /> |
| | 15 | | public class PrimeSubtractionOperationIterative : IPrimeSubtractionOperation |
| | 16 | | { |
| 1 | 17 | | private static readonly List<int> Primes = |
| 1 | 18 | | [ |
| 1 | 19 | | 2, |
| 1 | 20 | | 3, |
| 1 | 21 | | 5, |
| 1 | 22 | | 7, |
| 1 | 23 | | 11, |
| 1 | 24 | | 13, |
| 1 | 25 | | 17, |
| 1 | 26 | | 19, |
| 1 | 27 | | 23, |
| 1 | 28 | | 29, |
| 1 | 29 | | 31, |
| 1 | 30 | | 37, |
| 1 | 31 | | 41, |
| 1 | 32 | | 43, |
| 1 | 33 | | 47, |
| 1 | 34 | | 53, |
| 1 | 35 | | 59, |
| 1 | 36 | | 61, |
| 1 | 37 | | 67, |
| 1 | 38 | | 71, |
| 1 | 39 | | 73, |
| 1 | 40 | | 79, |
| 1 | 41 | | 83, |
| 1 | 42 | | 89, |
| 1 | 43 | | 97, |
| 1 | 44 | | 101, |
| 1 | 45 | | 103, |
| 1 | 46 | | 107, |
| 1 | 47 | | 109, |
| 1 | 48 | | 113, |
| 1 | 49 | | 127, |
| 1 | 50 | | 131, |
| 1 | 51 | | 137, |
| 1 | 52 | | 139, |
| 1 | 53 | | 149, |
| 1 | 54 | | 151, |
| 1 | 55 | | 157, |
| 1 | 56 | | 163, |
| 1 | 57 | | 167, |
| 1 | 58 | | 173, |
| 1 | 59 | | 179, |
| 1 | 60 | | 181, |
| 1 | 61 | | 191, |
| 1 | 62 | | 193, |
| 1 | 63 | | 197, |
| 1 | 64 | | 199, |
| 1 | 65 | | 211, |
| 1 | 66 | | 223, |
| 1 | 67 | | 227, |
| 1 | 68 | | 229, |
| 1 | 69 | | 233, |
| 1 | 70 | | 239, |
| 1 | 71 | | 241, |
| 1 | 72 | | 251, |
| 1 | 73 | | 257, |
| 1 | 74 | | 263, |
| 1 | 75 | | 269, |
| 1 | 76 | | 271, |
| 1 | 77 | | 277, |
| 1 | 78 | | 281, |
| 1 | 79 | | 283, |
| 1 | 80 | | 293, |
| 1 | 81 | | 307, |
| 1 | 82 | | 311, |
| 1 | 83 | | 313, |
| 1 | 84 | | 317, |
| 1 | 85 | | 331, |
| 1 | 86 | | 337, |
| 1 | 87 | | 347, |
| 1 | 88 | | 349, |
| 1 | 89 | | 353, |
| 1 | 90 | | 359, |
| 1 | 91 | | 367, |
| 1 | 92 | | 373, |
| 1 | 93 | | 379, |
| 1 | 94 | | 383, |
| 1 | 95 | | 389, |
| 1 | 96 | | 397, |
| 1 | 97 | | 401, |
| 1 | 98 | | 409, |
| 1 | 99 | | 419, |
| 1 | 100 | | 421, |
| 1 | 101 | | 431, |
| 1 | 102 | | 433, |
| 1 | 103 | | 439, |
| 1 | 104 | | 443, |
| 1 | 105 | | 449, |
| 1 | 106 | | 457, |
| 1 | 107 | | 461, |
| 1 | 108 | | 463, |
| 1 | 109 | | 467, |
| 1 | 110 | | 479, |
| 1 | 111 | | 487, |
| 1 | 112 | | 491, |
| 1 | 113 | | 499, |
| 1 | 114 | | 503, |
| 1 | 115 | | 509, |
| 1 | 116 | | 521, |
| 1 | 117 | | 523, |
| 1 | 118 | | 541, |
| 1 | 119 | | 547, |
| 1 | 120 | | 557, |
| 1 | 121 | | 563, |
| 1 | 122 | | 569, |
| 1 | 123 | | 571, |
| 1 | 124 | | 577, |
| 1 | 125 | | 587, |
| 1 | 126 | | 593, |
| 1 | 127 | | 599, |
| 1 | 128 | | 601, |
| 1 | 129 | | 607, |
| 1 | 130 | | 613, |
| 1 | 131 | | 617, |
| 1 | 132 | | 619, |
| 1 | 133 | | 631, |
| 1 | 134 | | 641, |
| 1 | 135 | | 643, |
| 1 | 136 | | 647, |
| 1 | 137 | | 653, |
| 1 | 138 | | 659, |
| 1 | 139 | | 661, |
| 1 | 140 | | 673, |
| 1 | 141 | | 677, |
| 1 | 142 | | 683, |
| 1 | 143 | | 691, |
| 1 | 144 | | 701, |
| 1 | 145 | | 709, |
| 1 | 146 | | 719, |
| 1 | 147 | | 727, |
| 1 | 148 | | 733, |
| 1 | 149 | | 739, |
| 1 | 150 | | 743, |
| 1 | 151 | | 751, |
| 1 | 152 | | 757, |
| 1 | 153 | | 761, |
| 1 | 154 | | 769, |
| 1 | 155 | | 773, |
| 1 | 156 | | 787, |
| 1 | 157 | | 797, |
| 1 | 158 | | 809, |
| 1 | 159 | | 811, |
| 1 | 160 | | 821, |
| 1 | 161 | | 823, |
| 1 | 162 | | 827, |
| 1 | 163 | | 829, |
| 1 | 164 | | 839, |
| 1 | 165 | | 853, |
| 1 | 166 | | 857, |
| 1 | 167 | | 859, |
| 1 | 168 | | 863, |
| 1 | 169 | | 877, |
| 1 | 170 | | 881, |
| 1 | 171 | | 883, |
| 1 | 172 | | 887, |
| 1 | 173 | | 907, |
| 1 | 174 | | 911, |
| 1 | 175 | | 919, |
| 1 | 176 | | 929, |
| 1 | 177 | | 937, |
| 1 | 178 | | 941, |
| 1 | 179 | | 947, |
| 1 | 180 | | 953, |
| 1 | 181 | | 967, |
| 1 | 182 | | 971, |
| 1 | 183 | | 977, |
| 1 | 184 | | 983, |
| 1 | 185 | | 991, |
| 1 | 186 | | 997 |
| 1 | 187 | | ]; |
| | 188 | |
|
| | 189 | | /// <summary> |
| | 190 | | /// Time complexity - O(n) |
| | 191 | | /// Space complexity - O(1) |
| | 192 | | /// </summary> |
| | 193 | | /// <param name="nums"></param> |
| | 194 | | /// <returns></returns> |
| | 195 | | public bool PrimeSubOperation(int[] nums) |
| 3 | 196 | | { |
| 20 | 197 | | for (var i = nums.Length - 1; i > 0; i--) |
| 8 | 198 | | { |
| 8 | 199 | | if (nums[i] > nums[i - 1]) |
| 4 | 200 | | { |
| 4 | 201 | | continue; |
| | 202 | | } |
| | 203 | |
|
| 4 | 204 | | var found = false; |
| | 205 | |
|
| 191 | 206 | | foreach (var prime in Primes.Where(p => p < nums[i - 1] && nums[i - 1] - p < nums[i])) |
| 3 | 207 | | { |
| 3 | 208 | | nums[i - 1] -= prime; |
| | 209 | |
|
| 3 | 210 | | found = true; |
| | 211 | |
|
| 3 | 212 | | break; |
| | 213 | | } |
| | 214 | |
|
| 4 | 215 | | if (!found) |
| 1 | 216 | | { |
| 1 | 217 | | return false; |
| | 218 | | } |
| 3 | 219 | | } |
| | 220 | |
|
| 2 | 221 | | return true; |
| 3 | 222 | | } |
| | 223 | | } |