| | 1 | | // -------------------------------------------------------------------------------- |
| | 2 | | // Copyright (C) 2025 Eugene Eremeev (also known as Yevhenii Yeriemeieiv). |
| | 3 | | // All Rights Reserved. |
| | 4 | | // -------------------------------------------------------------------------------- |
| | 5 | | // This software is the confidential and proprietary information of Eugene Eremeev |
| | 6 | | // (also known as Yevhenii Yeriemeieiv) ("Confidential Information"). You shall not |
| | 7 | | // disclose such Confidential Information and shall use it only in accordance with |
| | 8 | | // the terms of the license agreement you entered into with Eugene Eremeev (also |
| | 9 | | // known as Yevhenii Yeriemeieiv). |
| | 10 | | // -------------------------------------------------------------------------------- |
| | 11 | |
|
| | 12 | | namespace LeetCode.Algorithms.MaximizeTheNumberOfTargetNodesAfterConnectingTrees1; |
| | 13 | |
|
| | 14 | | /// <inheritdoc /> |
| | 15 | | public class MaximizeTheNumberOfTargetNodesAfterConnectingTrees1DepthFirstSearch : |
| | 16 | | IMaximizeTheNumberOfTargetNodesAfterConnectingTrees1 |
| | 17 | | { |
| | 18 | | /// <summary> |
| | 19 | | /// Time complexity - O(n^2 + m^2) |
| | 20 | | /// Space complexity - O(n + m) |
| | 21 | | /// </summary> |
| | 22 | | /// <param name="edges1"></param> |
| | 23 | | /// <param name="edges2"></param> |
| | 24 | | /// <param name="k"></param> |
| | 25 | | /// <returns></returns> |
| | 26 | | public int[] MaxTargetNodes(int[][] edges1, int[][] edges2, int k) |
| 2 | 27 | | { |
| 2 | 28 | | var n = edges1.Length + 1; |
| 2 | 29 | | var m = edges2.Length + 1; |
| | 30 | |
|
| 2 | 31 | | var graph1 = BuildGraph(edges1, n); |
| 2 | 32 | | var graph2 = BuildGraph(edges2, m); |
| | 33 | |
|
| 2 | 34 | | var bestFromGraph2 = 0; |
| | 35 | |
|
| 28 | 36 | | for (var j = 0; j < m; j++) |
| 12 | 37 | | { |
| 12 | 38 | | bestFromGraph2 = Math.Max(bestFromGraph2, CountWithin(graph2, j, k - 1)); |
| 12 | 39 | | } |
| | 40 | |
|
| 2 | 41 | | var result = new int[n]; |
| | 42 | |
|
| 24 | 43 | | for (var i = 0; i < n; i++) |
| 10 | 44 | | { |
| 10 | 45 | | result[i] = CountWithin(graph1, i, k) + bestFromGraph2; |
| 10 | 46 | | } |
| | 47 | |
|
| 2 | 48 | | return result; |
| 2 | 49 | | } |
| | 50 | |
|
| | 51 | | private static List<int>[] BuildGraph(int[][] edges, int size) |
| 4 | 52 | | { |
| 4 | 53 | | var graph = new List<int>[size]; |
| | 54 | |
|
| 52 | 55 | | for (var i = 0; i < size; i++) |
| 22 | 56 | | { |
| 22 | 57 | | graph[i] = []; |
| 22 | 58 | | } |
| | 59 | |
|
| 48 | 60 | | foreach (var edge in edges) |
| 18 | 61 | | { |
| 18 | 62 | | graph[edge[0]].Add(edge[1]); |
| 18 | 63 | | graph[edge[1]].Add(edge[0]); |
| 18 | 64 | | } |
| | 65 | |
|
| 4 | 66 | | return graph; |
| 4 | 67 | | } |
| | 68 | |
|
| | 69 | | private static int CountWithin(List<int>[] graphs, int start, int maxDepth) |
| 22 | 70 | | { |
| 22 | 71 | | if (maxDepth < 0) |
| 0 | 72 | | { |
| 0 | 73 | | return 0; |
| | 74 | | } |
| | 75 | |
|
| 22 | 76 | | var count = 0; |
| | 77 | |
|
| 22 | 78 | | var visited = new bool[graphs.Length]; |
| | 79 | |
|
| 22 | 80 | | var nodesQueue = new Queue<(int Index, int Depth)>(); |
| | 81 | |
|
| 22 | 82 | | nodesQueue.Enqueue((start, 0)); |
| | 83 | |
|
| 22 | 84 | | visited[start] = true; |
| | 85 | |
|
| 82 | 86 | | while (nodesQueue.Count > 0) |
| 60 | 87 | | { |
| 60 | 88 | | var node = nodesQueue.Dequeue(); |
| | 89 | |
|
| 60 | 90 | | count++; |
| | 91 | |
|
| 60 | 92 | | if (node.Depth == maxDepth) |
| 34 | 93 | | { |
| 34 | 94 | | continue; |
| | 95 | | } |
| | 96 | |
|
| 200 | 97 | | foreach (var graph in graphs[node.Index].Where(graph => !visited[graph])) |
| 38 | 98 | | { |
| 38 | 99 | | visited[graph] = true; |
| | 100 | |
|
| 38 | 101 | | nodesQueue.Enqueue((graph, node.Depth + 1)); |
| 38 | 102 | | } |
| 26 | 103 | | } |
| | 104 | |
|
| 22 | 105 | | return count; |
| 22 | 106 | | } |
| | 107 | | } |