< Summary

Information
Class: LeetCode.Algorithms.FindTheMaximumLengthOfValidSubsequence2.FindTheMaximumLengthOfValidSubsequence2DynamicProgramming
Assembly: LeetCode
File(s): D:\a\LeetCode-CS\LeetCode-CS\source\LeetCode\Algorithms\FindTheMaximumLengthOfValidSubsequence2\FindTheMaximumLengthOfValidSubsequence2DynamicProgramming.cs
Line coverage
100%
Covered lines: 14
Uncovered lines: 0
Coverable lines: 14
Total lines: 44
Line coverage: 100%
Branch coverage
100%
Covered branches: 4
Total branches: 4
Branch coverage: 100%
Method coverage

Feature is only available for sponsors

Upgrade to PRO version

Metrics

MethodBranch coverage Crap Score Cyclomatic complexity Line coverage
MaximumLength(...)100%44100%

File(s)

D:\a\LeetCode-CS\LeetCode-CS\source\LeetCode\Algorithms\FindTheMaximumLengthOfValidSubsequence2\FindTheMaximumLengthOfValidSubsequence2DynamicProgramming.cs

#LineLine coverage
 1// --------------------------------------------------------------------------------
 2// Copyright (C) 2025 Eugene Eremeev (also known as Yevhenii Yeriemeieiv).
 3// All Rights Reserved.
 4// --------------------------------------------------------------------------------
 5// This software is the confidential and proprietary information of Eugene Eremeev
 6// (also known as Yevhenii Yeriemeieiv) ("Confidential Information"). You shall not
 7// disclose such Confidential Information and shall use it only in accordance with
 8// the terms of the license agreement you entered into with Eugene Eremeev (also
 9// known as Yevhenii Yeriemeieiv).
 10// --------------------------------------------------------------------------------
 11
 12namespace LeetCode.Algorithms.FindTheMaximumLengthOfValidSubsequence2;
 13
 14/// <inheritdoc />
 15public class FindTheMaximumLengthOfValidSubsequence2DynamicProgramming : IFindTheMaximumLengthOfValidSubsequence2
 16{
 17    /// <summary>
 18    ///     Time complexity - O(k^2 + n * k)
 19    ///     Space complexity - O(k^2)
 20    /// </summary>
 21    /// <param name="nums"></param>
 22    /// <param name="k"></param>
 23    /// <returns></returns>
 24    public int MaximumLength(int[] nums, int k)
 225    {
 226        var maximumLength = 0;
 27
 228        var dp = new int[k, k];
 29
 2830        foreach (var num in nums)
 1131        {
 1132            var mod = num % k;
 33
 7834            for (var prev = 0; prev < k; prev++)
 2835            {
 2836                dp[prev, mod] = dp[mod, prev] + 1;
 37
 2838                maximumLength = Math.Max(maximumLength, dp[prev, mod]);
 2839            }
 1140        }
 41
 242        return maximumLength;
 243    }
 44}