< Summary

Information
Class: LeetCode.Algorithms.CanIWin.CanIWinDynamicProgramming
Assembly: LeetCode
File(s): D:\a\LeetCode-CS\LeetCode-CS\source\LeetCode\Algorithms\CanIWin\CanIWinDynamicProgramming.cs
Line coverage
100%
Covered lines: 27
Uncovered lines: 0
Coverable lines: 27
Total lines: 66
Line coverage: 100%
Branch coverage
100%
Covered branches: 14
Total branches: 14
Branch coverage: 100%
Method coverage

Feature is only available for sponsors

Upgrade to PRO version

Metrics

MethodBranch coverage Crap Score Cyclomatic complexity Line coverage
CanIWin(...)100%44100%
CanWinPlayer(...)100%1010100%

File(s)

D:\a\LeetCode-CS\LeetCode-CS\source\LeetCode\Algorithms\CanIWin\CanIWinDynamicProgramming.cs

#LineLine coverage
 1// --------------------------------------------------------------------------------
 2// Copyright (C) 2025 Eugene Eremeev (also known as Yevhenii Yeriemeieiv).
 3// All Rights Reserved.
 4// --------------------------------------------------------------------------------
 5// This software is the confidential and proprietary information of Eugene Eremeev
 6// (also known as Yevhenii Yeriemeieiv) ("Confidential Information"). You shall not
 7// disclose such Confidential Information and shall use it only in accordance with
 8// the terms of the license agreement you entered into with Eugene Eremeev (also
 9// known as Yevhenii Yeriemeieiv).
 10// --------------------------------------------------------------------------------
 11
 12namespace LeetCode.Algorithms.CanIWin;
 13
 14/// <inheritdoc />
 15public class CanIWinDynamicProgramming : ICanIWin
 16{
 17    /// <summary>
 18    ///     Time complexity - O(n * 2^n)
 19    ///     Space complexity - O(2^n)
 20    /// </summary>
 21    /// <param name="maxChoosableInteger"></param>
 22    /// <param name="desiredTotal"></param>
 23    /// <returns></returns>
 24    public bool CanIWin(int maxChoosableInteger, int desiredTotal)
 1325    {
 1326        if (desiredTotal == 0)
 227        {
 228            return true;
 29        }
 30
 1131        if (desiredTotal > maxChoosableInteger * (maxChoosableInteger + 1) / 2)
 232        {
 233            return false;
 34        }
 35
 936        return CanWinPlayer(maxChoosableInteger, 1, 0, desiredTotal, new int[1 << maxChoosableInteger]) == 1;
 1337    }
 38
 39    private static int CanWinPlayer(int n, int player, int selectedMask, int rest, int[] dp)
 12012840    {
 12012841        if (dp[selectedMask] != 0)
 9080442        {
 9080443            return dp[selectedMask];
 44        }
 45
 103469146        for (int i = 1, mask = 1; i <= n; i++, mask <<= 1)
 33394247        {
 33394248            if ((selectedMask & mask) > 0)
 21316549            {
 21316550                continue;
 51            }
 52
 12077753            if (rest - i <= 0)
 65854            {
 65855                return dp[selectedMask] = player;
 56            }
 57
 12011958            if (-player != CanWinPlayer(n, -player, selectedMask | mask, rest - i, dp))
 1771159            {
 1771160                return dp[selectedMask] = player;
 61            }
 10240862        }
 63
 1095564        return dp[selectedMask] = -player;
 12012865    }
 66}