< Summary

Information
Class: LeetCode.Algorithms.AlternatingGroups2.AlternatingGroups2BruteForce
Assembly: LeetCode
File(s): D:\a\LeetCode-CS\LeetCode-CS\source\LeetCode\Algorithms\AlternatingGroups2\AlternatingGroups2BruteForce.cs
Line coverage
100%
Covered lines: 21
Uncovered lines: 0
Coverable lines: 21
Total lines: 55
Line coverage: 100%
Branch coverage
100%
Covered branches: 8
Total branches: 8
Branch coverage: 100%
Method coverage

Feature is only available for sponsors

Upgrade to PRO version

Metrics

MethodBranch coverage Crap Score Cyclomatic complexity Line coverage
NumberOfAlternatingGroups(...)100%88100%

File(s)

D:\a\LeetCode-CS\LeetCode-CS\source\LeetCode\Algorithms\AlternatingGroups2\AlternatingGroups2BruteForce.cs

#LineLine coverage
 1// --------------------------------------------------------------------------------
 2// Copyright (C) 2025 Eugene Eremeev (also known as Yevhenii Yeriemeieiv).
 3// All Rights Reserved.
 4// --------------------------------------------------------------------------------
 5// This software is the confidential and proprietary information of Eugene Eremeev
 6// (also known as Yevhenii Yeriemeieiv) ("Confidential Information"). You shall not
 7// disclose such Confidential Information and shall use it only in accordance with
 8// the terms of the license agreement you entered into with Eugene Eremeev (also
 9// known as Yevhenii Yeriemeieiv).
 10// --------------------------------------------------------------------------------
 11
 12namespace LeetCode.Algorithms.AlternatingGroups2;
 13
 14/// <inheritdoc />
 15public class AlternatingGroups2BruteForce : IAlternatingGroups2
 16{
 17    /// <summary>
 18    ///     Time complexity - O(n * k)
 19    ///     Space complexity - O(1)
 20    /// </summary>
 21    /// <param name="colors"></param>
 22    /// <param name="k"></param>
 23    /// <returns></returns>
 24    public int NumberOfAlternatingGroups(int[] colors, int k)
 325    {
 326        var numberOfAlternatingGroups = 0;
 27
 3828        for (var i = 0; i < colors.Length; i++)
 1629        {
 1630            var isAlternating = true;
 31
 9232            for (var j = 0; j < k - 1; j++)
 4133            {
 4134                var curr = colors[(i + j) % colors.Length];
 4135                var next = colors[(i + j + 1) % colors.Length];
 36
 4137                if (curr != next)
 3038                {
 3039                    continue;
 40                }
 41
 1142                isAlternating = false;
 43
 1144                break;
 45            }
 46
 1647            if (isAlternating)
 548            {
 549                numberOfAlternatingGroups++;
 550            }
 1651        }
 52
 353        return numberOfAlternatingGroups;
 354    }
 55}